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Synchronization of spatiotemporal chaos in asymmetrically coupled map lattices
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The synchronization of spatiotemporal chaos of two asymmetrically coupled map lattices is studied by
numerical simulations. It is found that the synchronization can be achieved by linking two spatially extended
systems with a common signal or signals through one-site connections. The synchronized states are found to be
closely related to the approaches used to synchronize the most upstream sites of the two spatially extended
systems. The effects of small backward diffusions and the local disturbances on the development of the
synchronized states are also discussed.@S1063-651X~98!07404-2#

PACS number~s!: 05.45.1b
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The synchronization of chaotic systems has attracted c
siderable attention in recent years@1–11#. This synchroniza-
tion has clear applications to communications, control a
anticontrol of chaos in biomedical systems, and system id
tification. Furthermore, it may be responsible for the satu
tion of the invariant characteristics of chaos in chains
coupled nonlinear oscillators and in more complicated s
tems. It is likely that control and synchronization of cha
and hyperchaos play important roles in the workings of b
logical and artificial neural networks.

Currently the synchronization of hyperchaotic syste
has become an active research area@12–17#, due to its po-
tential applications in secure communications. In Ref.@13#, it
is shown that two one-way coupled map lattices~OCML!
@18–22# may be synchronized by linking the most upstrea
sites to a common chaotic signal, which is extracted from
same OCML system but with a periodic boundary conditio
or to a common stochastic signal. It is also found that
spatially periodic and temporally chaotic states may be
served if the lattice size of the drive system is smaller th
that of the response system. For other types of driving
nals, no single-site-linking synchronization is reported.

In this paper, we study the synchronization of spatiote
poral chaos~STC! of two asymmetrically coupled map la
tices ~ACML ! @23–25#. When the backward diffusion con
stants are set to zero, ACML reduces to OCML and so un
certain conditions, it is expected that the ACML may beha
in a similar way as the OCML does under certain circu
stances. On the other hand, it has been shown that a no
nishing backward diffusion may dramatically change the
namical behavior of the system under consideration@26#. In
view of the influence of the downstream sites through
presence of backward diffusion couplings in an ACML sy
tem, it seems impossible to expect that the synchroniza
of STC can be attained via one-site connection when
backward diffusion is appreciable. To understand the gen
features of the ACML systems, we performed extensive
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merical simulation studies, and investigated the influence
the presence of the backward diffusion on the synchron
tion of spatially extended systems, which are linked throu
single-point coupling.

To demonstrate spatiotemporal synchronization of op
flow systems, we consider the following ACML@22–25#:

xn11
i 5~12g12g2! f ~xn

i !1g1f ~xn
i 21!1g2f ~xn

i 11!, ~1!

wherexn
i is the amplitude associated with thei th lattice site

at time stepn. We take the logistic mapf (x)512ax2 as the
local element and choose the nonlinearitya to be well within
the chaotic regime. We further assume thatg1.g2>0.
Wheng250, Eq.~1! reduces to the one-way coupled logist
lattice ~OCLL!. For open flow systems, the boundary con
tions will strongly influence the dynamical behavior of th
system. We consider the following two different bounda
conditions: ~i! the periodic boundary conditionxn

i 1N5xn
i ,

and ~ii ! the open boundary condition defined by

xn11
1 5~12g2! f ~xn

1!1g2f ~xn
2!,

xn11
N 5~12g1! f ~xn

N!1g1f ~xn
N21!.

The replica of the open flow system to be synchronized
given by

yn11
i 5~12g12g2! f ~yn

i !1g1f ~yn
i 21!1g2f ~yn

i 11!, ~2!

which is driven away by some signalsn derived from the
drive system~1! or is taken from a stochastic variable. Equ
tion ~2! is, therefore, called the response system. Recen
many different approaches to synchronize chaotic and hy
chaotic systems have been proposed. Among them are
active-passive decomposition~APD!, direct substitution, and
feedback control approach. The success of these metho
based on whether all Lyapunov exponents of the respo
system could be made negative. Generally speaking, to
chronizing hyperchaotic or spatially extended systems,
needs distributed linkings or at least some dense lattice
connecting nodes. In many applications, however, it is v
4135 © 1998 The American Physical Society



a

e
e
t

a
t

e

t

s
a

t

t if
lso

os

o-
nce
or

a

ing

4136 57YU JIANG AND P. PARMANANDA
difficult to make a one-to-one contact between all elemen
of the drive and response systems. Therefore, it is of gre
theoretical and practical interest to search for the few-poin
linking synchronization schemes that are feasible for sp
tially extended systems.

In this paper, we apply different synchronization ap
proaches on the first sites of two ACML’s. Since the bound
ary conditions play an important role in the development o
spatiotemporal waves in open flow systems, we focus o
attention on two cases:~A! The open boundary condition is
used for both the drive and the response systems,~B! the
periodic boundary condition for the drive system while th
open boundary condition is assumed for the response syst
It is interesting to note that the computer simulation resul
for open flow systems are often machine dependent, that
for certain values of system parameters, different compute
may yield qualitatively different behaviors. The results re
ported here are only those properties that are, at least, qu
tatively the same for different machines. Our main resul
can be summarized as follows.

~A! Open boundary conditions for both the drive and th
response system: In this case the sizes of both systems
assumed to be the same. We first couple the first sites of
two systems to a common stochastic variable, i.e.,xn

15jn

andyn
15jn . It is found that forg2 fixed, there exists a criti-

cal value such that forg1.gc , two systems may be synchro-
nized with each other. The same is true for connecting d
rectly the first sites of the two systems, i.e.,xn

15yn
1.

Generally speaking, the increase ofg2 and a leads to the
destabilization of the synchronized state, while the increa
of g1 may favor the synchronization. Next, we tried to use
chaotic signal to drive the first sites. Here, we take thatxn

1

5zn andyn
15zn with zn11512a8z2. It is interesting to find

that ata5a852, g150.8, the synchronization is observed
for g250.01, but not forg250, which indicates that the
backward diffusion may possibly reduce the noise effec

FIG. 1. The propagation of synchronization front. The reduce
amplitude differencedxn (5yn

i 2xn
i 1n/200) is plotted against the

space for every 400 iterations, starting from randomly chosen initi
conditions. The system size isN5200, a51.9, g150.7, andg2

50.1. The results are independent of the systems size and are qu
tatively the same for different machines.
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@26#. As is expected, further increasingg2 will destroy the
synchronization. Another interesting phenomenon is tha
a,a8, the synchronization of spatiotemporal chaos may a
be achieved. Nevertheless, ifa.a8, no synchronization is
observed.

We now turn to the feedback control scheme of cha
synchronization, which is defined as

xn11
1 5~12b!@~12g12g2! f ~xn

1!1g1f ~xn
N!1g2f ~xn

2!#

1bzn,

yn11
1 5~12b!@~12g12g2! f ~yn

1!1g1f ~yn
N!1g2f ~yn

2!#

1bzn , ~3!

where zn11512a8zn
2 or zn5jn with jn being a random

variable. It is expected that this kind of coupling may pr
vide a much stronger synchronization forcing because o
the first sites are synchronized with the chaotic driving

d

l

ali-

FIG. 2. The suppression of spatiotemporal chaos by apply
the feedback control approach~3! to the first sites of two ACML’s.
The system parameters are taken to bea5a852, g150.51, and
g250.35.

FIG. 3. The traveling wave in a synchronized state ata52, g1

50.51,g250.1, Nd522, andNr5100. The reduced amplitudeYn
i

5yn
i 1n/1000 is plotted against the spacei at every 2000 steps.
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57 4137SYNCHRONIZATION OF SPATIOTEMPORAL CHAOS IN . . .
stochastic driving, the attractor traced out by the first s
will be nonchaotic, which implies that the nearby trajector
will converge instead. We found that the synchronization c
be achieved even for moderate backward diffusions. Figu
shows a typical evolution of synchronization wave, start
from the most upstream edge. It is remarkable that this fe

FIG. 4. The return map (yn
i 11,yn

i ) for i 531. The system param
eters are the same as in Fig. 3, except that the size of the d
system is taken to be~a! Nd522, ~b! Nd523, and~c! Nd524.
s
s
n
1

g
d-

back control approach may also result in the suppressio
spatiotemporal chaos through one-site control. Figure
shows the spatial period-2 and temporal period-1 state
tained by controlling the first site of the ACML, using Eq
~3!. It is worthwhile to point out that even for not very highl
asymmetrical couplings, the one-point control method s
works.

We also studied the synchronization via mutual conn
tions, or bidirectional couplings. In our case, we consider
following synchronization method:

xn11
1 5~12b!@~12g12g2! f ~xn

1!1g1f ~xn
N!1g2f ~xn

2!#

1b f~yn
1!,

~4!

yn11
1 5~12b!@~12g12g2! f ~yn

1!1g1f ~yn
N!1g2f ~yn

2!#

1b f~xn
1!.

ve

FIG. 5. ~a! The evolution of the initial pointlike disturbance o
small amplitude at the left-hand boundary in a spatially unifo
state. The system parameters areN5400, a52, g150.72, andg2

50.1. The amplitude of the pointlike disturbance isd51029. Note
that the connection between two systems is cut off between the
7200 and 8400. The local small perturbation is added at the
8000. ~b! The incipient development of the disturbance is sho
every 6 iterations after the quenched perturbation is switched o
the iteration 8000.
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4138 57YU JIANG AND P. PARMANANDA
We found that the synchronization of spatiotemporal ch
can be achieved for moderate values of the linking cons
b. At a52, g150.8, g250.05, andb50.8, we found that
the synchronized state is spatiotemporally periodic, indic
ing the suppression of spatiotemporal chaos through o
point mutual couplings.

~B! The periodic drive system versus open response
tem: We consider only the synchronization of the drive s
tem with periodic boundary condition and the response s
tem with open boundary condition via the direct substitut
method, i.e.,xn

15yn
1. In general, if the drive and respons

systems are of the same size, we found similar behavior a
case~A!. If, however, the drive and the response syste
have different sizes, the synchronized states will vary.
instance, ifNd ~the size of the drive system! is greater than
Nr ~the size of the response system!, then all elements of the
response system may be synchronized with those of the d
system, except a small number of sites near the downstr
edges. On the other hand, ifNd,Nr , then we may observe
different behaviors, depending on the boundary conditi
used by the drive and response systems. When the per
boundary condition is used in the drive system, the respo
system will exhibit temporally chaotic but spatially period
patterns with periodNd . Depending on the size of the driv
system, the system may show stationary, or traveling
terns with irregular or relatively regular wave forms. By i
spection of the attractor of the return maps, one finds p
odic doubling bifurcation as the size of the drive syste
varies~see Fig. 3!.

Since our model system is convective unstable, arbitr
weak noise destroys the synchronized state. So it seem
teresting to study the effects of the external perturbations
the synchronization of spatiotemporal chaos. Mathem
cally, when two systems are completely synchronized, t
will remain synchronized even if the synchronizing coupli
is removed. In Fig. 4 we show the effect of quenched lo
disturbance on the synchronized state. First we use the d
substitution method at a single site to synchronize two
perchaotic systems. When we turn off the synchronizing c
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pling, it is seen that the two systems remained synchroniz
At some later time, we add a perturbation at the same
that is used for passing the synchronization signal, for a v
short duration~a few iterations!, and then we impose the
synchronizing force again. We found that the synchroniz
state after removal of the synchronization linking is unsta
to the weak noise, as is expected. The synchronizing fo
also plays a role of control, which makes the system sta
against external noise.

Another interesting feature found for the asymmetrica
coupled map lattices is the generalized synchronization
which the synchronization relationship is of the formy
5f„x(t)…. For concreteness, we takeyn

i 5xn2k
i 2 j , which is

called the space-shift and time-delay synchronization. T
synchronization is found for periodic boundary condition f
both the drive and the response systems with equal size.
finding may be relevant for manipulating the message in
secure communications~see Fig. 5!.

In conclusion, we have shown that synchronizing sp
tiotemporal chaos in ACML systems may be achieved
using one-site linking between the drive and the respo
systems. We have investigated the influence of the backw
diffusion on the development of the spatiotemporal states
is interesting to find that different synchronization schem
may give rise to different dynamical behaviors of the ACM
system, which marks the difference between the ACML a
the OCLL. It is clear that if there is no feedback to the fir
site from its neighbor (g250), then the synchronized stat
would be independent of the synchronization approach u
Our numerical results reveal that the conclusions drawn fr
the study of the OCLL systems are generally not applica
to open flow systems. In all our simulations carried out
coupled map lattices, we noted that the properties of
dynamical system may be qualitatively different by usi
different machines. Such a difference becomes appreci
when the system under consideration is highly asymme
cally coupled, such as in OCLL. This problem might pers
in other spatially extended systems with asymmetrical c
plings.
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